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Introduction 
 Mafic-ultramafic-hosted Ni-Cu-(PGE) and 
PGE deposits are believed to have formed by 
segregation of immiscible sulfide melts and/or 
alloys from mafic-ultramafic magmas in dynamic 
magmatic systems such as lava channels, feeder 
dikes, and magma chambers. However, some of the 
mineralization in some deposits (e.g., hydrothermal 
veins at Kambalda: Lesher & Keays, 1984; 
Stillwater J-M reef: Boudreau et al., 1986; Sudbury 
footwall ores: Farrow & Watkinson, 1996) is 
associated with hydrous and/or halogen-bearing 
phases and is interpreted to have formed from or 
been modified by hydrothermal fluids.  
 Different base, precious, and semi-metals 
have different solubilities and partition differently 
between silicate magmas, sulfide melts, and 
supercritical fluids/volatiles (e.g., Keays & Crocket, 
1970; Keays et al., 1982; Barnes & Maier, 1999; 
Mathez, 1999; Wood, in press). For example, the 
solubilities of Fe, Co, Ni, Cu, PGEs, and Au are 
different in sulfide melts and hydrothermal fluids; 
Au, Cu, and platinum-group PGEs (PPGE: Pt, Pd, 
Rh) behave differently than Ni, Co, and iridium-
group PGEs (IPGE: Ru, Ir, Os); and Ru and Ir 
behave differently than other IPGEs. Therefore, it 
should be possible to distinguish between those 
ores deposited by magmatic processes and only 
modified by hydrothermal fluids and those ores 
deposited directly from hydrothermal fluids. 
Unfortunately, very few deposits have been 
systematically analyzed for complete suites of base, 
precious, and semi-metals, but it is possible to 
make some preliminary interpretations. 
 
Discrimination 
 Although the behavior of the different 
metals varies with magma/fluid composition, 
temperature, pressure, fO2, and fS2, the general 
order of partitioning into sulfide melts appears to be 
PGE ~ Au > Cu > Ni > Co > Fe, whereas the 
general order of solubility in hydrothermal fluids 
appears to be Fe > Cu ~ Au > Pt ~ Pd > Ni > Co >> 
Ru ~ Ir. Differential crystallization/ precipitation 
processes can further fractionate different elements, 

but it is possible, at least in most cases, to 
distinguish between magmatic and hydrothermal 
mineralization on the basis of Au/Cu/Pt/Pd, Ir/Ni, 
and Cr/Fe ratios. These differences are best 
illustrated on primitive mantle-normalized variation 
diagrams (Figs. 1-5; data sources shown as initials 
of authors and year; ore types: D$ = disseminated, 
N$ = net-textured, RN$ = reverse net-textured, M$ 
= massive, IPS = Interpillow, Ni-SED = Ni-
enriched metasedimentary, V$ = hydrothermal 
vein.) 
 For example, the majority of the ores at 
Kambalda (Fig. 1), Langmuir (not shown), 
Donaldson West (Fig. 2), and Sudbury (Fig. 3) 
exhibit relatively systematic variations in metal 
ratios with fractionations consistent with magmatic 
segregation from komatiitic, basaltic komatiitic, 
and noritic magmas (see Barnes & Naldrett, 1985), 
respectively, and local mobilization of Au, Pd, Pt, 
and/or Cu. However, hydrothermal veins and Ni-
enriched metasediments in these localities are 
strongly depleted in Ir, sometimes depleted in other 
IPGE (e.g., Rh at Sudbury, Rh-Ru-Os at 
Donaldson), and also depleted (where data are 
available) in Cr. In contrast, ores at Lac des Iles, 
New Rambler, and Rathbun Lake (Fig. 4) are 
strongly enriched in PPGE relative to IPGE and 
strongly depleted in Ir relative to Ni and/or other 
PGE. Their compositions are consistent with 
hydrothermal modification of magmatic sulfides 
(Lac des Iles and some Rathbun Lake samples) or 
with hydrothermal transport and deposition (New 
Rambler and some Rathbun Lake samples). 
 The ores in the Bushveld and Stillwater 
complexes (Fig. 5) are depleted in Ni and Cu 
relative to other metals, but are not significantly 
depleted in Ir or other IPGE. Their Ir contents are 
more consistent with magmatic segregation (e.g., 
Campbell et al., 1983) and hydrothermal 
modification than with hydrothermal generation  
(e.g., Boudreau et al., 1986). However, Stillwater 
ores appear to have lower Cu and much higher Pd 
and Pt contents, consistent with stronger 
hydrothermal modification.  
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J99 Bushveld Merensly Reef BM99 Bushveld UG-2 Reef
J99 Bushveld UG-2 Reef BM99 Bushveld LG Chromitites
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J99 Bushveld Platreef BNG85 Stillwater J-M Reef

Bushveld & Stillwater

  
 
 

Clearly, more experimental data are required to 
establish the relative mobilities of PGEs in 
hydrothermal fluids, but if the observed 
fractionations in known hydrothermal ores are 
characteristic, then they suggest that the PGE 
mineralization in the Bushveld and Stillwater 
Complexes segregated via magmatic processes and 
was subsequently modified by hydrothermal 
processes. 
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