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 Recently, the platinum-group elements 
(PGE) have been found to pose a potential 
environmental risk. Ironically, the use of these 
elements in automobile exhaust systems to reduce 
air pollution (among other uses) has resulted in 
their becoming contaminants in roadside dust and 
river sediments (Wei and Morrison, 1994), sewage 
sludges (Lottermoser, 1994), soils (Jarvis et al., 
2001) and the marine environment (Ravizza and 
Bothner, 1996). The PGE may be both bioavailable 
and toxic under certain circumstances (Brubaker et 
al., 1975; Bunger et al., 1996; Gebel et al., 1997). 
The isotopes 107Pd, 103Ru and 106Rh are fission 
products of nuclear fuel and the conditions of their 
potential migration from deeply buried nuclear 
waste repositories or contaminated surface sites 
into the biosphere must be understood (Brookins, 
1984; McKinley et al., 1988). Knowledge of the 
stoichiometries and stability constants of potentially 
important PGE complexes is required to understand 
the mobility, bioavailability and biogeochemical 
cycling of these elements in the environment. 
 It has been suggested that organic ligands 
might be responsible for the behavior of PGE in 
surficial environments (Cousins and Kinloch, 1976; 
Bowles, 1986; Wood and Vlassopoulos, 1990; 
Bowles et al., 1994; 1995). Acetate and oxalate are 
important simple carboxylic acid anions that occur 
naturally in soil solutions, bog waters, sedimentary 
basinal brines, sediment porewaters and sediment-
hosted geothermal systems (Bruckert, 1970; 
Graustein et al., 1977; Thurman, 1985; MacGowan 
and Surdam, 1988; Sposito, 1989; Martens, 1990). 
Perhaps the most important organic material in 
surficial environments are humic substances (humic 
and fulvic acid), both with respect to quantity and 
metal-binding capability. Organic acids and their 
anions may play a number of roles in governing the 
behavior of PGE in the environment including 
(Wood, 1996): 1) increased solubility or decreased 
sorption owing to the formation of dissolved 
complexes or a decrease in pH; 2) formation of 
colloidal particles; 3) reduction; 4) modification of 
the surface properties of minerals; 5) modification 
of the rates of various reactions; and 6) 
modification of bioavailability and/or toxicity. 
However, thermodynamic data for PGE complexes 

with organic ligands likely to be encountered in 
nature are scarce (Giordano, 1992), which has 
precluded quantitative assessment of their role in 
PGE transport. The available evidence, suggests 
that Pt and Pd form surprisingly strong complexes 
with organic ligands such as acetate, oxalate, and 
fulvic and humic acids. 
 Wood et al. (1994) showed that the 
presence of acetate increases the solubility of 
amorphous Pd hydroxide. In the same study, UV-
visible and FTIR spectroscopy showed evidence of 
formation of Pd-acetate and Pd-oxalate complexes. 
Measurements of the solubility of Pd(OH)2 
(amorph) as a function of acetate concentration, 
permitted Pickrell (1997) to derive a stability 
constant for the PdAc20 complex of log β2 = 9.2. 
Wood et al. (1994), using the stability constant of 
Pd(ox)aq (log β1 = 8.7) determined by Nabivanets 
and Kalabina (1972), calculated that this complex 
may be important at free oxalate concentrations as 
low as ~10-8-10-9 M. Measured acetate and oxalate 
concentrations in soil solutions and other natural 
waters are much higher than the concentrations 
required to form complexes with Pd(II), but 
account must be taken of the competition for 
oxalate by H+ and metals other than Pd. However, 
even taking competition into consideration, 
carboxylate anions (especially oxalate, malonate, 
citrate) seem likely to play a role in the 
hydromorphic transport of Pd in soils and some 
natural waters (see Figure 1). Li and Byrne (1990) 
showed that amino acids can form sufficiently 
strong complexes with Pd2+ that these complexes 
may dominate Pd speciation in seawater. It is also 
expected, based on limited experimental evidence 
and theoretical considerations, that S-containing 
ligands would also form strong complexes with the 
PGE. 
 Wood (1990) allowed fulvic acid 
(Armadale B horizon) to react with aqueous PtCl4

2- 
over a wide range of pH (3-11). It was shown that 
fulvic acid maintained Pt in the aqueous phase to a 
greater extent than deionized water. In later 
experiments involving Pd, Wood et al. (1994) 
demonstrated that fulvic acid inhibited the 
precipitation of Pd(OH)2(amorph) from otherwise 



supersaturated solutions over a broad pH range. In 
the same study it also was demonstrated that simple 
organic compounds representing simple analogues 
of fulvic acid, i.e., o-phthalate and salicylate, also 
form relatively strong complexes with Pd. Bowles 
et al. (1995) have conducted experiments which 
suggest that Pt and Pd are taken up by solid HS, 
and that dissolved HS can result in the 
solubilization of these metals in aqueous solutions. 
 Thus, there is much evidence to suggest 
that simple and complex organic ligands have the 
capability to mobilize Pt and Pd at geologically 
relevant concentrations through the formation of 
aqueous complexes. However, quantitative 
thermodynamic data, i.e., stability constants for the 
relevant PGE-organic complexes, are scarce. 
Moreover, there is essentially no information on the 
ability of organic ligands to mobilize Os, Ru, Ir or 
Rh. This lack of data hinders quantitative modeling 
efforts to assess the precise role of organic ligands 
in the dispersion of PGE in the surficial 
environment. 
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Figure 1. Diagram showing the distribution of Pd(II) species at 25°C in a model soil solution containing 6 x 10-6 M total 
chloride, and 10-3 M total acetate. Concentrations as high as 10-3 M total oxalate are relatively common in soil solutions 
(Sposito, 1989). Species amounting to less than 1% at all pH values are omitted for clarity. The diagram shows that, at pH 
less than ~5, oxalate complexes appear to predominate over inorganic species. 
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